Solving 1D Conservation Laws Using Pontryagin's Minimum Principle

نویسندگان

  • Wei Kang
  • Lucas C. Wilcox
چکیده

This paper discusses a connection between scalar convex conservation laws and Pontryagin’s minimum principle. For flux functions for which an associated optimal control problem can be found, a minimum value solution of the conservation law is proposed. For scalar space-independent convex conservation laws such a control problem exists and the minimum value solution of the conservation law is equivalent to the entropy solution. This can be seen as a generalization of the Lax–Oleinik formula to convex (not necessarily uniformly convex) flux functions. Using Pontryagin’s minimum principle, an algorithm for finding the minimum value solution pointwise of scalar convex conservation laws is given. Numerical examples of approximating the solution of both space-dependent and spaceindependent conservation laws are provided to demonstrate the accuracy and applicability of the proposed algorithm. Furthermore, a MATLAB routine using Chebfun is provided (along with demonstration code on how to use it) to approximately solve scalar convex conservation laws with space-independent flux functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws II

Kurganov and Tadmor have developed a numerical scheme for solving the initial value problem for hyperbolic systems of conservation laws. They showed that in the scalar case their scheme satisfies a local maximum–minimum principle i.e., the solution at future is bounded above and below by the solution at current locally. In this paper we show that this scheme is positive in the sense of Friedric...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Pontryagin's Minimum Principle for Fuzzy Optimal Control Problems

The objective of this article is to derive the necessary optimality conditions, known as Pontryagin's minimum principle, for fuzzy optimal control problems based on the concepts of differentiability and integrability of a fuzzy mapping that may be parameterized by the left and right-hand functions of its $alpha$-level sets.

متن کامل

Existence and Uniqueness of the Riemann Problem for a Nonlinear System of Conservation Laws of Mixed Type

We study the system of conservation laws given by { uI+[u(l-v)lx=O, VI + [v(a + u)lx = 0 (a> I is a constant), with any Riemann initial data (uT ' vT ) . The system is elliptic in the domain where (v u + a 1)2 + 4(a l)u < 0 and strictly hyperbolic when (v u+a _1)2 +4(a I)u > O. We combine and generalize Lax criterion and Oleinik-Liu criterion to introduce the generalized entropy condition (G.E....

متن کامل

A Novel Successive Approximation Method for Solving a Class of Optimal Control Problems

This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2017